Proposal for a Large Multipurpose Detector at Homestake

MILIND DIWAN
Brookhaven National Laboratory
2/10/2006

acronym? LMD

first phase: LMD-1, 100kT water Cherenkov, Fiducial:75kT

Participants in LOI

- D. Cline, M. Diwan, K. Lande, R. Lanou, A.K. Lanou, W. Marciano
- Speaking for many others. All are welcome.
- A strategy needs to be developed to get to a 100 kT detector. This is the physics justification.
- Plan advocated is to start building a 100 kT cavity as soon as possible.

Outline of this talk

- Will focus on LMD-1, 100 kT water Cherenkov detector.
- Physics topics:
 - Very Long Baseline Neutrino Oscillation
 - Nucleon decay
 - Astrophysical neutrinos
- Brief details of study on accelerator beams.

Detector parameters

- Need 500 kT fiducial mass for proton decay, neutrino astrophysics, neutrino beam physics with CP sensitivity.
- I00 kT is initial step => 50 m dia X 50 m high tank.
- depth? May not need anti-counter if deep enough.
- ~10% energy resolution on quasilelastics.
- Threshold of 5 MeV for solar and supernova
- Time res. ~few ns for pattern recognication.
- Good mu/e separation. <1%.
 - 1,2,3 track separation, NC rejection ~X20.
- This level of performance can be obtained with water Cherenkov detector with 20-40% PMT coverage.
 - => 11000 to 22000 20inch PMTs for 100kT.

Nucleon decay

- Large body of work by HyperK, and UNO.
- background levels for the positron+Pion mode
 - 3.6/MTon-yr (normal)
 - 0.15/MTon-yr (tight)

LMD-100 will hit backg. in ~3yrs. It could be important to perform this first step before building bigger.

LMD-10yrs 3X10³⁴ yrs

Ref: Shiozawa (NNN05)

Other modes

Background analysis for other modes is not as advanced. But much can be learned from SK experience.

LMD-100-10yrs: 5X10^33 yrs

Theory expectation: 10^34 yrs? But guidance is poor.

LMD-100-10yrs 5X10³³ yrs

Uno whitepaper:SBHEP01-3

Astrophysical Neutrinos Event rates. LMD-1, assume 5 yr exposure

- Atmospheric Nus: ~10000 muon, ~5000 electrons. (Ref: Kajita nnn05)
- Solar Nus: >63000 elastic scattering E>5MeV (including Osc.) (Ref: uno)
- Galactic Supernova: ~30000/10 sec in all channels. (~1000 elastic events). (Ref: uno)
- Relic Supernova: (ref:Ando nnn05)
 - flux: ~5 (1.1) /cm2/sec Enu>10 (19) MeV
 - rate: 75 (35) events over backg ~100!

Need analysis with these numbers

Observational Result by Super-K

Malek et al. 2003

- Analysis using data for 1496 days (4.1 yr).
- As the result, they could not find positive signal.
- Upper limit on the SRN flux $(E_y > 19.3 \text{ MeV})$:

Just above the prediction (1.1 cm⁻² s⁻¹)

3 Generation oscillations

Difference in mass squares: $(m_2^2 - m_1^2)$

Solar : L~15000*km*

2-nu:
$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}$$

$$P(\nu_a \rightarrow \nu_b) = \sum_i |U_{ai}|^2 |U_{bi}|^2$$

3-nu:
$$+2Re(U_{a1}^*U_{b1}U_{a2}U_{b2}^*\times exp(-i\Delta m_{21}^2L/2E) \\ +2Re(U_{a1}^*U_{b1}U_{a3}U_{b3}^*\times exp(-i\Delta m_{31}^2L/2E)$$

CP phase
$$^{+2Re(U_{a1}U_{b1}U_{a3}U_{b3}\times exp(-i\Delta m_{31}L/2E))}_{+2Re(U_{a2}^*U_{b2}U_{a3}U_{b3}^*\times exp(-i\Delta m_{32}^2L/2E))}$$

no matter effects

Oscillation nodes at $\pi/2, 3\pi/2, 5\pi/2, ... (\pi/2)$: $\Delta m^2 = 0.0025 eV^2$,

$$E = 1 GeV, L = 494 km$$
.

Next Generation Experiments

- ightharpoonup increase sensitivity $\sin^2 2\theta_{13} \& \delta_{\rm CP}$ significantly
- ightharpoonup precision measurements of Δm_{32}^2 & $\sin^2 2\theta_{23}$
- > resolve mass hierarchy (sign of Δm_{32}^2)
- sensitive to new physics

The heart of the 3 generation picture needs an appearance experiment with L/E that includes effects from both mass differences. This implies baseline > 1000 km

This performs all remaining physics in one project

Super Neutrino Beam to DUSEL Candidate Sites

Why Very Long Baseline?

observe multiple nodes in oscillation pattern

less dependent on flux normalization

neutrino travels larger distance through earth larger matter effects

flux ~ L⁻²: lower statistics but: CP asymmetry ~ L

sensitivity to δ_{CP} independent of distance! (Marciano hep-ph/0108181)

$\nu_{\mu} \rightarrow \nu_{e}$ with matter effect

Approximate formula (M. Freund)

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \frac{\sin^{2}2\theta_{13}}{(\hat{A}-1)^{2}} \sin^{2}((\hat{A}-1)\Delta)$$

$$+\alpha \frac{8J_{CP}}{\hat{A}(1-\hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)$$

$$+\alpha \frac{8I_{CP}}{\hat{A}(1-\hat{A})} \cos(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)$$

$$+\alpha^{2} \frac{\cos^{2}\theta_{23} \sin^{2}2\theta_{12}}{\hat{A}^{2}} \sin^{2}(\hat{A}\Delta)$$

 $J_{CP} = 1/8 \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$ $I_{CP} = 1/8 \cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$ $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$, $\Delta = \Delta m_{31}^2 L / 4E$ $\hat{A} = 2VE / \Delta m_{31}^2 \approx (E_{\nu}/GeV) / 11$ For Earth's crust.

Electron neutrino appearance physics parameter extraction

For 1000 - 2000 km baseline effects across energy band.

	$E_{\! u} < 1 \; { m GeV}$	$1 < E_{ u} 2 < {\sf GeV}$	$E_{ u} > 2 \; { m GeV}$
$\sin^2 2\theta_{13}$	\checkmark	\checkmark	\checkmark
$sign(\Delta m_{32}^2)$	-	-	$\sqrt{\sqrt{}}$
δ_{CP}	\checkmark	$\sqrt{}$	\checkmark
solar	$\sqrt{\sqrt{}}$		-

- It's a complex picture with many effects!
- But, effects have different strength at different energies.
- Measuring across the wide energy band makes it possible to sort them out.

US possibilities for beam

Source	Proton beam energy	Proton beam power	
FNAL MI (McGinnis upgrade)	Ep=8-120GeV	I-2 MW X (Ep/I20GeV)	
FNAL MI (with 8GeV LINAC)	Ep=8-120 GeV	2 MW @ any Ep	
BNL-AGS (upgrade 2.5- 5 Hz)	Ep=28 GeV	I-2 MW	

Flux shapes

1.5

2

2.5

E_v (GeV)

10

10 -5

0.5

US possible baselines

Source	Detector	Distance	Depth	Comment
FNAL Soudan		735 km	2300ft	High E beam exists, not DUSEL site
FNAL	Homestake	1290 km	7700ft	no beam, DUSEL site, capable of large exca.
FNAL	Henderson	1500km	no beam, DUSEL statement of large ex	
BNL	Soudan	1711 km	2300 ft	
I BINI I Homestake I /540km I //00 ft I '		study of beam and physics exists and documented		
BNL	Hendersn	2767km	5000 ft	

Event rates

			Event rate for
Source-det	Detector size	beam E and power	neutrino
			running
FNAL-HS(1290)	I00kT	0.5MW@60GeV	~30000CC
111AL-113(1270)		0.51100@00dev	~10000NC
	I00kT	0.5M\A/@/06.\/	~22000
FNAL-Hend(1500)		0.5MW@60GeV	~7500
FNAL-HS(1290)	500kT	IMW@28GeV	194000CC
			66000NC
DNU 116/25 40)	500kT	LM\A/@20C.\/	50000CC
BNL-HS(2540)		IMW@28GeV	17000NC
FNAL-HS(1290)	200kT	2MW@8GeV using Miniboone data	2188 CC
			850 NC
NO) (A (O LO)	30kT		~20000 CC
NOVA(810)		2X0.65MW@120	~6000 NC

5 X 10⁷ sec of running assumed = 2 years at FNAL

$\nu_{_{\mu}}$ disappearance

neutrino running:

1MW beam
0.5Mt water Cerenkov de 290km distance
5e7s running time
190000 tot CC events

determine Δm_{32}^2 & $\sin^2 2\theta_{23}$ to 1% systematics dominated

anti-neutrino running:

same as ν but with 2MW beam

including anti-ν running:

CPT test possible

errors below 1% achievable

Complete water Cherenkov detector simulations progress

 v_e CC for signal; all $v_{u,\tau,e}$ NC, v_e beam for background

■
$$\Delta m_{21}^2 = 7.3 \times 10^{-5} \text{ eV}^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$

Select single ring events and select electrons

analysis Perform of single electron pattern, likelihood cut retaining ~50% of signal.

Signal/backg = 700/2005

Signal/back = 321/169

C. Yanagisawa (Stony Brook), 3rd BNL/UCLA workshop http://www.physics.ucla.edu/hep/proton/proton2005.htm

Off axis for FNAL-HS?

- 1. 4 meter diameter tunnel allows for this option.
- 2. Large (~1.3 m) movement needed at the target station. Main difficult is moving proton beam.
- 3. Allow horizontal movement of target station including shielding (1000 ton). Solutions exist.
- 4. Could build both on-axis and offaxis options from the start.

Already been designed at BNL.

$v_{\rm e}$ Appearance

backgrounds:

- beam v_{e}
- NC ν

neutrino running:

measure $\sin^2 2\theta_{13}$ and $\delta_{\rm CP}$ for $\sin^2 2\theta_{13} > 0.01$ resolve mass hierarchy

include anti-neutrino run:

exclude $\sin^2 2\theta_{13} > 0.003$

if $\sin^2 2\theta_{13}$ too small $\rightarrow \delta_{\rm CP}$ measurement not possible observation $\nu_{\rm e}$ appearance possible through solar term

Discovery of θ_{13}

- simulate data for δ and $\theta_{13} \neq 0$
- try to fit them with $\theta_{13} = 0$
- repeat the fit for the wrong hierarchy
- take the smallest χ^2

3 σ Sensitivity to θ_{13} ≠ 0 Comparison with Proton Driver

2.5 yr each v and \overline{v} run

Gary Feldman

BNL-FNAL Meeting

14 November 2005

6

CP fraction

- reduces 2D plot to 3 points
- allows unbiased comparison
- allows risk assessment
- CPF = 1, worst case guaranteed sensitivity
- CPF =0, best case

weak baseline dependence

long baselines are clearly favored

Discovery of CP violation

- simulate data for $\delta \neq 0, \pi$ and θ_{13}
- try to fit them with $\delta = 0, \pi$
- repeat the fit for the wrong hierarchy
- take the smallest χ^2

Baseline dependence

 baselines between 1000 and 2000 km are very similar

Comparison of discovery reaches (3σ)

95% CL Determination of the Mass Ordering

Summary

- Physics case for a 100 kT detector at Homestake.
- nucleon decay, astrophysical neutrinos, long baseline.
- Important work performed on detector background issue.
- Lowest risk most cost effective option for a long baseline second generation experiment.
- If sufficiently long L/E, then you will see electron appearance through the solar term.